If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-8x-60=0
a = 12; b = -8; c = -60;
Δ = b2-4ac
Δ = -82-4·12·(-60)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8\sqrt{46}}{2*12}=\frac{8-8\sqrt{46}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8\sqrt{46}}{2*12}=\frac{8+8\sqrt{46}}{24} $
| 11n-9=5n+24 | | (2x-6)/(x-3)=9 | | 3x/5=(x+1)/2 | | 11+7.4n=9+7,6n | | (-0.8)+(-1.7)=q | | x/4+6x=611 | | 18k–12k=12 | | 43e=1,375 | | 6/t+6/t-2=1 | | 12+7.3n=10+7.7n | | 43e=1375 | | 15+6.8n=9+7.2n | | 15+6.8n=9 | | x/2+6x=533 | | x/2+6=533 | | 7.2-6.8=x | | R(p)=-10p2+130p | | Y=5(x-10)(x+7) | | 7^5x-9=49 | | -7(2p+2)-23=3(3p+3) | | 11(c-2)+3=2+c-21 | | 1=0.5x(0.67) | | -16+4k=k-5k | | x97=63 | | (2x-16)x=480 | | 2t-5=-10=t= | | 15x=15x+6 | | -6=6+b | | F(2)=4x-11 | | 6t^2=18 | | (x+7)x=450 | | -5=56+b |